Infinitesimal Bialgebras, Pre-lie and Dendriform Algebras

نویسنده

  • MARCELO AGUIAR
چکیده

We introduce the categories of infinitesimal Hopf modules and bimodules over an infinitesimal bialgebra. We show that they correspond to modules and bimodules over the infinitesimal version of the double. We show that there is a natural, but non-obvious way to construct a pre-Lie algebra from an arbitrary infinitesimal bialgebra and a dendriform algebra from a quasitriangular infinitesimal bialgebra. As consequences, we obtain a pre-Lie structure on the space of paths on an arbitrary quiver, and a striking dendriform structure on the space of endomorphisms of an arbitrary infinitesimal bialgebra, which combines the convolution and composition products. We extend the previous constructions to the categories of Hopf, pre-Lie and dendriform bimodules. We construct a brace algebra structure from an arbitrary infinitesimal bialgebra; this refines the pre-Lie algebra construction. In two appendices, we show that infinitesimal bialgebras are comonoid objects in a certain monoidal category and discuss a related construction for counital infinitesimal bialgebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ennea-algebras 1

A generalisation of a recent work of M. Aguiar and J.-L. Loday on quadri-algebras called tennea-algebras constructed over dendriform trialgebras is proposed. Such algebras allow the construction of nested dendriform trialgebras and are related to pre-Lie algebras, t-infinitesimal bialgebras and tBaxter operators. We also show that the augmented free t-ennea-algebra has a structure of connected ...

متن کامل

Double Constructions of Frobenius Algebras and Connes 2-cocycles and Their Duality

We construct an associative algebra with a decomposition into the direct sum of the underlying vector spaces of another associative algebra and its dual space such that both of them are subalgebras and the natural symmetric bilinear form is invariant or the natural antisymmetric bilinear form is a Connes 2-cocycle. The former is called a double construction of Frobenius algebra and the latter i...

متن کامل

Pre-alternative Algebras and Pre-alternative Bialgebras

We introduce a notion of pre-alternative algebra which may be seen as an alternative algebra whose product can be decomposed into two pieces which are compatible in a certain way. It is also the “alternative” analogue of a dendriform dialgebra or a pre-Lie algebra. The left and right multiplication operators of a pre-alternative algebra give a bimodule structure of the associated alternative al...

متن کامل

Braided Lie Bialgebras

We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...

متن کامل

Construction of Nijenhuis Operators and Dendriform Trialgebras 1

We construct Nijenhuis operators from particular bialgebras called dendriformNijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, kind of Baxter-Rota operators, and therefore closely related dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras made out with nine operations and presenting an exot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002